Quantum Chemical Analysis of MHC-Peptide Interactions for Vaccine Design

نویسندگان

  • W.A Agudelo
  • M.E Patarroyo
چکیده

The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide's amino acids, carried out with the aim of describing MHC-peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic 'landscape' and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multi-antigenic, subunit-based vaccines, through the application of quantum chemistry methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of a Method to Prepare Liposomes Containing HER2/Neu-Derived Peptide as a Vaccine Delivery System for Breast Cancer

The purpose of this study was to optimize a method for the encapsulation of P5 peptide, a new designed peptide containing MHC class I epitopes from rat HER2/neu protein, into liposomes as an approach for breast cancer vaccine formulation. The efficiency of liposomal encapsulation of peptides is generally low and development of an optimized method to increase encapsulation efficiency is a big ch...

متن کامل

Optimization of a Method to Prepare Liposomes Containing HER2/Neu-Derived Peptide as a Vaccine Delivery System for Breast Cancer

The purpose of this study was to optimize a method for the encapsulation of P5 peptide, a new designed peptide containing MHC class I epitopes from rat HER2/neu protein, into liposomes as an approach for breast cancer vaccine formulation. The efficiency of liposomal encapsulation of peptides is generally low and development of an optimized method to increase encapsulation efficiency is a big ch...

متن کامل

Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design.

Peptides bind with high affinity to MHC class I molecules by anchoring certain side-chains (anchors) into specificity pockets in the MHC peptide-binding groove. Peptides that do not contain these canonical anchor residues normally have low affinity, resulting in impaired pMHC stability and loss of immunogenicity. Here, we report the crystal structure at 1.6 A resolution of an immunogenic, low-a...

متن کامل

Design of cocktail peptide vaccine against Cytomegalovirus infection

Objective(s):Human Cytomegalovirus (HCMV) remains a major morbidity and mortality cause in immuno suppressed patients. Therefore, significant effort has been made towards the development of a vaccine. In this study, the expression of the pp65 and gB fusion peptides and Fc domain of mouse IgG2a as a novel delivery system for selective uptake of antigens by antigen-presenting cells (APCs) in Pich...

متن کامل

Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.

The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010